What’s the matter with
“What’s the matter with Connecticut?”

A Thesis
submitted to the Faculty of the
Graduate School of Arts and Sciences
of Georgetown University
in partial fulfillment of the requirements for the
degree of
Master
in Public Policy

By

Adam Z Bouyamourn, MSc.

Washington, DC
April 11, 2018
What’s the matter with
“What’s the matter with Connecticut?”

Adam Z Bouyamourn, MSc.

Thesis Advisor: Jonathan M Ladd, PhD

Abstract

Gelman et al. (2007) argue that the marginal effect of income on voting Republican decreases in richer states – that “income matters more in Red America than in Blue America”. I model individual-level and state-level racial resentment for the 2008, 2012, and 2016 elections, and find that the Gelman et al. picture is misleading in several ways.

A model that considers only income is biased as a result of excluding racial resentment. Racial resentment better explains US voting patterns than income, and the magnitude of the effect of changes in racial resentment is much greater than the magnitude of the effect of changes in income. The marginal effect of income decreases as a function of both state-level racial resentment and state-level income, but, in two of the last three elections, not as a function of state-level income alone. Connecticut isn’t more Democratic because it is richer, but because it is richer and lower in racial resentment. There is also evidence of dynamic changes: racial resentment as a determinant of voting intention has increased in predictive power from 2008 to 2016.

Index words: Voting behaviour, American politics, Racial resentment, Multilevel models, Causal inference, US Presidential elections
DEDICATION

To A & Q, who are elsewhere.
ACKNOWLEDGMENTS

I would like to thank Christopher Warshaw, Jonathan Ladd, and Paasha Mahdavi for advice, comments, and financially-uncompensated emotional labour throughout graduate school applications. Thanks also to Alan Ware and Stephen Williams, for starting me out on this path. And to Richard Appell, for his facility with the roasting of chickens.
Table of Contents

Chapter

1. What’s going on in Connecticut? 1

 1.1 Hypotheses and expectations 2

2. Methods ... 5

 2.1 Data .. 6

 2.2 Racial resentment scores 6

 2.3 Models ... 7

3. Results .. 10

 3.1 Gelman models, 2008-2016 11

 3.2 Racial resentment models, 2008-2016 14

 3.3 Comparing the ‘naive’ models 17

 3.4 Model fit statistics 17

 3.5 Combined model 18

4. Conclusions ... 20

 4.1 Racial resentment matters 20

 4.2 The marginal income effect 20

 4.3 The Tesler story: From competition over class to competition over race? 22

 4.4 What’s the matter with “What’s the matter with Connecticut?” 23
List of Figures

3.1 2008 Gelman model ... 11
3.2 2012 Gelman model ... 12
3.3 2016 Gelman model ... 13
3.4 2008 Racial Resentment model 14
3.5 2012 Racial Resentment model 15
3.6 2016 Racial Resentment model 16
List of Tables

3.1 AIC and BIC model comparisons 17
3.2 Combined model coefficient estimates 18
Chapter 1

What’s going on in Connecticut?

Gelman et al. provide evidence that the effect of income on voting intention varies as a function of state median income: as state median income increases, the marginal effect of income on voting Republican approaches zero from the positive direction. They examine presidential elections from 1984 to 2004. Gelman et al. consider whether their results are biased as a function of excluding race from the analysis. Wealthier states may be more racially homogeneous, and hence, richer. In this story, Connecticut is not just richer, but whiter. (“Perhaps the high slope in Mississippi reflects poor black Democrats and rich white Republicans, while Connecticut’s flatter slope arises from its more racially homogeneous population” (2007: 359).) Rerunning the analysis on white respondents, Gelman finds that the key effect remains, even though its magnitude has diminished: rich white people in rich states are also less likely to vote Republican than rich white people in poor states.

A contrasting explanations focuses on the role of racial resentment at the individual- and state-level. Racial resentment has a key role in the modeling and prediction of voting intention in the United States. Tesler has written extensively on the increased salience of race and racial resentment as a dimension of political competition since Obama’s election. Sears and Tesler (2010) make a number of arguments about the relationship between economic perceptions and race, and the political mobilization of individuals high on racial resentment during Obama’s presidency. Tesler (2012) finds evidence that the racialization of public policy preferences has
increased since Obama’s election. The increase in salience of an underlying dimension of political conflict creates incentives for politicians to mobilize around that dimension (e.g. McLean 2002). He has also argued that perceptions of economic outcomes have become increasingly racialized since 2008 (Tesler 2016a, 2016b).

As a general point, it is clear that Gelman et al.’s modelling strategy renders them vulnerable to omitted variable bias from a number of directions. Their findings are descriptively interesting, but are unlikely to be robust to the inclusion of alternative substantive covariates.

1.1 Hypotheses and expectations

We expect that racial resentment is a significant predictor of voting intention, associated with but not dominated by income at both the individual- and state- levels, and that its importance as a dimension of political conflict, and hence, as a determinant of voting intention, has increased from 2008 to 2016.

Suppose that Blue states, in addition to being richer, are also lower in racial resentment. In that case, state-level racial resentment would confound the effect of state-level income on voting intention. Gelman’s analysis would show that rich states support Democratic candidates, but the causal mechanism would be that individuals in rich states are less likely to have high levels of racial resentment, which reduces their support for Republican candidates. There is a simultaneity problem here, in that it is difficult to factor out the effect of higher state incomes from the effect of racial resentment. One modelling approach would be to use instrumental variables to assess which effect, if either, is the ‘dominant’ effect. The approach pursued here is to compare the relative magnitude of omitted variable bias for two competing model
specifications, before considering the significance of coefficients in a combined model of income and racial resentment.

We expect that to find clear evidence of omitted variable bias in the Gelman model. The intercept and slope estimates extracted from that model would vary as a function of state-level racial resentment, even though racial resentment was not included in the model.

Second, we would expect there to be no or a small relationship between median state income and the coefficients extracted from the model of racial resentment. If all of the covariance between median state income and voting intention is explained by variation in racial resentment, then we would expect there to be no unmodelled\footnote{I use ‘unmodelled’ in place of ‘endogenous’, since I think the terminology is unhelpful. When we describe the problem of endogeneity, we say that a variable is not included in the modelled but correlated with an independent variable within the model. The omitted variable is therefore \textit{exogenous} to the model, though there is \textit{endogenous} causation. This is confusing. I prefer to refer to `modelled’ and 'unmodelled' variables, since what is meant is much clearer to the reader. I hope it catches on.} effect of income on the intercept and slopes of the racial resentment model. In particular, we would expect this relationship to be asymmetric: we would see that unmodelled racial resentment influences the coefficient and slope estimates of the income model, but that state median income does not influence the coefficients and slopes of the racial resentment model. This would count as evidence that the racial resentment effect ‘dominates’ the income effect: that apparent interactions between income and state median income are really interactions between income and state-level racial resentment.

Finally, in a model of both income and racial resentment, we would expect the racial resentment effects to be both substantively larger and to ‘wash out’ some or all of the income effects. That is, we would expect covariance between voting intention and income to be explained by covariance between racial resentment and voting inten-
tion. We would also expect to see the covariance between interaction terms between the state-level covariates wash out the significance of the state-level income covariate.
Chapter 2

Methods

I extend the work of Gelman et al. (2007) in several ways. First, I extend their analysis to the 2008, 2012, and 2016 presidential elections using ANES and CCES data. I refer to the multilevel Gelman varying-intercepts and varying-slopes model of voting intention, equation (1) below, variously as “the Gelman model”, the “income model” and the “naive’ income model”. The term ‘naive’ is intended to connote that the model is a function exclusively of that variable, and ignores likely confounding substantive covariates.

Second, I construct a measure of racial resentment using factor analysis, and use this to run a model of voting intention as a function of individual-level and state-level racial resentment. I call this the ‘naive’ racial resentment model.

I assess the bias of the Gelman model by plotting its estimated state-level coefficients against state-level racial resentment. Though this model is biased as a result of excluding income in 2008 and 2012, there is evidence that the model is not biased in the 2016 election. It is striking that income did not explain

Third, I construct a varying-intercept, nonlinear varying-slope combined model of voting intention as a function of racial resentment, income, and their interactions. This “combined model” can be used to assess the relative significance and relative magnitude or clinical significance of the income and racial resentment effects.
2.1 Data

I use data from the 2012 and 2016 Cooperative Congressional Election Study, and the 2008 wave of the American National Election Study. In each case individual income is a categorical variable. Data for state median incomes for each year is taken from the US Census Bureau.

2.2 Racial resentment scores

I use factor analysis on a set of survey items in the ANES 2008 and CCES 2012 and 2016 data sets to derive a factor that measures racial resentment. The ANES and CCES 2016 surveys each contained four survey items, but the CCES 2012 only contained two items, which is not sufficient for the factor to be identified. The questions and wording are listed in the appendix. For this year, the fa package in R generated a factor that was an aggregate score for the two questions, and did not estimate an error variance for the factors. RMSEA for the factor scores were 0.054 for 2016 items, 0.345 for the 2008 items (2012 items were an aggregate); proportion of underlying variance explained was equal to .31 for 2016, .66 for 2012, and .37 for 2008 scores.

The mean of these individual-level scores was calculated by state using dplyr, and used in the regression analysis.

There is some debate about the substantive interpretability of these measures, and the ANES 2016 Pilot Study tested new items that are argued to better tap the underlying attitude dimension corresponding to the idea, as Kinders and Sanders put it, that “blacks do not try hard enough to overcome the difficulties they face and...take what they have not earned” (Kinder and Sanders 1996: 106). The argument is that
the existing racial resentment items commit too many Type I errors – overattributing
racial resentment to people when they are in fact not racially resentful. ¹

2.3 Models

By way of testing the Gelman hypothesis, I fit the following models for each of the
election cycles, using the R package `bglmer()`. The variables are as follows:

\[Pr(R_{Vote_{ij}} = 1) \] is the probability that the respondent voted for the Repub-
llican presidential candidate in the election year for which the model is run.

\[RR_{ij} \] is the racial resentment score for the \(i^{th}\) respondent in the \(j^{th}\) state.

\[RR_j \] is the racial resentment score for the \(j^{th}\) state.

\[I_{ij} \] is the income of the \(i^{th}\) respondent (demeaned).

\[I_j \] is the median income in the \(j^{th}\) state.

\[\eta_j \] is the between-state error term.

\[\epsilon_{ij} \] is the within-state error term.

And: \(\forall k : \mathbb{E}[\eta_{kj}] = \mathbb{E}[\epsilon_{ij}] = 0 \), where the within-state errors have an estimated
variance-covariance matrix \(G \), and the within-state errors have an estimated variance \(\sigma^2 \).

¹I would argue that existing racial resentment measures commit too many Type II errors.
But the argument is mostly conceptual: I would be happy to substitute ‘racism’ for ‘racial
resentment’ throughout this paper, since I would argue that ‘racial resentment’ and ‘Old-
Fashioned Racism’, as the survey items have traditionally been known, are both just sub-
species of racism.
Gelman model

\[Pr(R_{Vote_{ij}} = 1) = \text{logit}^{-1}[\gamma_{00} + \gamma_{01}I_{ij} + \gamma_{11}I_{j} + \gamma_{12}(I_{ij} \times I_{j}) + \eta_{ij} + \eta_{2i}I_{i} + \epsilon_{ij}] \] \hspace{1cm} (2.1)

Racial resentment model

\[Pr(R_{Vote_{ij}} = 1) = \text{logit}^{-1}[\gamma_{00} + \gamma_{01}RR_{ij} + \gamma_{11}RR_{j} + \gamma_{12}(RR_{ij} \times RR_{j}) + \eta_{j} + \eta_{j}RR_{ij} + \epsilon_{ij}] \] \hspace{1cm} (2.2)

We extract the coefficients from these models and plot them against state median income and state-level racial resentment. This allows us to assess the extent and direction of omitted variable bias in each model. We plot both with linear trends and Lowess curves to allow us to visually evaluate the plausibility of the assumption of linearity. To assess the significance of the relationships shown in the graphs, we run ‘metamodels’ in which we regress the values of the coefficients on either state median income or state racial resentment, and report p-values. This allows us to infer whether variables excluded from the model have a statistically significant effect on the estimates of our parameters. Consistent with our hypotheses above, we expect racial resentment to be a significant omitted variable with respect to income.

We then fit a combined model that provides the best fit with the fewest parameters by beginning from the maximal model represented by equation (3). Essentially this is a model with parameters for each of the combinations of state and income-level varying intercepts and varying (nonlinear) slopes.

We use pairwise \(\chi^2\) tests to delete parameters from the model so that we are left with a final, more parsimonious model of similar explanatory power. That model is given by equation (4), and is fitted to each of the three waves of data separately.
“Maximal” combined model

\[
Pr(R_{\text{Vote}_{ij}} = 1) = \text{logit}^{-1}[\gamma_{00} + \gamma_{01}I_j + \gamma_{02}RR_j + \gamma_{11}I_{ij} + \gamma_{12}RR_{ij} + \gamma_{13}I_{ij}^2 + \\
\gamma_{21}(RR_{ij} \times RR_j) + \gamma_{22}(RR_j \times I_{ij}) + \gamma_{23}(RR_j \times I_{ij}^2) + \\
\gamma_{31}(I_j \times RR_{ij}) + \gamma_{32}(I_j \times I_{ij}) + \gamma_{33}(I_j \times I_{ij}^2) + \\
\eta_{0j} + \eta_{1j}RR_{ij} + \eta_{2j}I_{ij} + \eta_{3j}I_{ij}^2 + \epsilon_{ij}]
\]

(2.3)

Most parsimonious combined model

\[
Pr(R_{\text{Vote}_{ij}} = 1) = \text{logit}^{-1}[\gamma_{00} + \gamma_{01}I_j + \gamma_{02}RR_j + \gamma_{11}I_{ij} + \gamma_{12}RR_{ij} + \gamma_{13}I_{ij}^2 + \gamma_{21}(RR_j \times I_j) + \\
\beta_{1j}I_{ij} + \beta_{2j}RR_i + \beta_{3j}I_{ij}^2 + \eta_{1j} + \eta_{2j}RR_{ij} + \eta_{3j}I_{ij} + \eta_{4}I_{ij}^2 + \epsilon_{ij}]
\]

(2.4)

(4) is a varying-intercept, varying slopes model, where the intercepts vary as a function of income, and racial resentment, and the slopes are a linear function of racial resentment and a nonlinear function of income. We are interested in the fixed effects in (4), which should describe the relationship at a national level between income, racial resentment, and their state-level counterparts.
To assess the extent of omitted variable bias in the ‘naive’ models, I extract the estimated intercept and slope coefficients for each of these models, and plot them against state median income and state racial resentment. I run ‘meta-models’ in which the slope coefficients are regressed on the exogenous variables, and report p-values. Significant meta-model coefficients constitute evidence of omitted variable bias. I report and discuss these models graphically. I compare the performance of the ‘naive’ models by reporting model fit statistics in Table 3.1

I provide tables of the coefficients for the most parsimonious combined model in Table 3.2. This acts as a robustness test of Gelman’s conclusions: does the relationship between state income and voting attention remain when racial resentment is included in the model?
3.1 Gelman models, 2008-2016

Figure 3.1: 2008 Gelman model. In 2008, intercept (top-left) and slope estimates (top-right) decrease as a function of average state income, in line with the Gelman story that voters are less Republican in Blue states, and that income matters less in rich states. However, racial resentment is clearly an omitted variable: intercepts vary significantly as a function of racial resentment (bottom-left). The marginal effect of income on voting intention (bottom-right) does not vary as a function of state resentment ($p = .57$).
Figure 3.2: 2012 Gelman model. In 2012, the Gelman story is again confirmed. However, the bias due to omitting racial resentment is very large: both intercepts and slopes vary very systematically as a function of unmodelled racial resentment. States with higher levels of racial resentment experienced larger income effects. The slope coefficient in this year is biased as a function of omitted state-level racial resentment.
Figure 3.3: 2016 Gelman model. In 2016, there is a relatively small slope coefficient in the Gelman model, suggesting the attenuating effect of being in a rich state was smaller than in other years. Racial resentment has an influence on intercepts, but not the slope coefficients.
3.2 Racial resentment models, 2008-2016

Figure 3.4: 2008 Racial Resentment model. In 2008, intercepts increase linearly as a function of racial resentment (top-left). The effect of racial resentment does not change as a function of state racial resentment; that is, there is no evidence of a peer effect (top-right). There is a negative relationship between both the intercepts and the slopes of the racial resentment model, and state median income. The racial resentment model assigns lower intercepts to rich states than poor states. The effect of individual racial resentment on voting intention decreases in rich states (bottom-right).
Figure 3.5: 2012 Racial Resentment model. Racial resentment is associated with an increase in ex ante probability of support for Romney. There is evidence of a negative peer effect (top-right): the effect of racial resentment on voting intention declines as a state increases in racial resentment ($p = 0.004$). There is a negative relationship between state income and intercepts: richer states are less likely to vote for Romney ex ante. There was no obvious relationship between the slope coefficient and state income.
Figure 3.6: 2016 Racial Resentment model. The slope estimate increases as a function of state racial resentment, indicating a positive peer effect ($p < .0001$). In 2016, the effect of individual-level racial resentment was magnified by being in a state with high levels of racial resentment. There was no relationship between the racial resentment model’s slope and intercept estimates and state median income ($p = .407, p = .883$). That is striking: state-level income did not have an omitted influence on the coefficient estimates for this year.
3.3 Comparing the ‘naive’ models

I find evidence that the intercepts of the Gelman model, which we can think of as the ‘ex ante’ probability of a state supporting the Republican candidate, are biased as a result of excluding racial resentment in all three elections. The 2012 slope estimate is biased as a function of state-level racial resentment, and the 2016 slope estimate is not significant: there was no attenuating impact of state-level income on propensity to vote Republican in the most recent election. Only the 2008 election saw an ‘unbiased’ slope coefficient. In 2008, it seems that the effect of being in a rich state on income was not just the result of omitted variable bias.

3.4 Model fit statistics

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2012</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income model AIC</td>
<td>1714.191</td>
<td>24954.97</td>
<td>49675.65</td>
</tr>
<tr>
<td>RR model AIC</td>
<td>1613.102</td>
<td>17479.61</td>
<td>33029.04</td>
</tr>
<tr>
<td>ΔAIC</td>
<td>101.09</td>
<td>7475.35</td>
<td>16646.62</td>
</tr>
<tr>
<td>% difference</td>
<td>5.8%</td>
<td>29.95%</td>
<td>33.51%</td>
</tr>
<tr>
<td>Income model BIC</td>
<td>1751.122</td>
<td>25009.65</td>
<td>49735.18</td>
</tr>
<tr>
<td>RR model BIC</td>
<td>1650.474</td>
<td>17535.33</td>
<td>33089.37</td>
</tr>
<tr>
<td>ΔBIC</td>
<td>100.65</td>
<td>7474.32</td>
<td>16645.81</td>
</tr>
<tr>
<td>% difference</td>
<td>5.7%</td>
<td>29.8%</td>
<td>33.4%</td>
</tr>
</tbody>
</table>

Table 3.1: AIC and BIC model comparisons

As shown in table 1, the AIC and BIC for the racial resentment models are significantly lower than for the Gelman models in pairwise comparisons for each year. That is, a model of racial resentment that excludes income better explains the data than a model of income that excludes racial resentment. Of course, opting for either the income-only or racial-resentment-only models would be a poor modelling choice. However, the fit statistics show that, of the two models, the income-only model performs
significantly worse than the racial resentment-only model. The ‘naive’ effect of racial
resentment is greater than the ‘naive’ effect of income on voting behaviour. This is a
descriptively interesting finding.

3.5 Combined model

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2012</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-1.27***</td>
<td>-1.02***</td>
<td>-0.19***</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.12)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>RR_{ij}</td>
<td>1.33***</td>
<td>2.36***</td>
<td>2.62***</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.07)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>RR_{j}</td>
<td>2.03***</td>
<td>1.65**</td>
<td>1.73***</td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td>(0.51)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>I_{ij}</td>
<td>0.68***</td>
<td>0.21***</td>
<td>0.08***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>I_{ij}^2</td>
<td>0.22**</td>
<td>-0.01***</td>
<td>-0.10***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.00)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>I_{j}</td>
<td>-0.10</td>
<td>-0.13*</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.06)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>$RR_{j} \times I_{j}$</td>
<td>-0.84</td>
<td>1.66***</td>
<td>0.77*</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(0.50)</td>
<td>(0.38)</td>
</tr>
<tr>
<td>N</td>
<td>1445</td>
<td>18240</td>
<td>36454</td>
</tr>
</tbody>
</table>

***$p < 0.001$, **$p < 0.01$, *$p < 0.05$

Table 3.2: Combined model coefficient estimates

The intercept in each year is substantively interpretable as the log odds of support
for the Republican candidate when income and racial resentment are held at their
mean of zero. Note that it is larger in the years in which the Republican candidate did not win (2008, 2012) than in the year in which the Republican candidate did win.

In all cases, individual and state-level racial resentment are highly significant and substantively large (clinically significant) predictors of the likelihood of voting Republican. In 2016, an increase of one standard deviation increase in individual-level racial resentment increased the odds of voting for Trump by 9.09 times.

Individual income effects were found to be positive across all waves, with the linear effect of income being that it was associated with increased support for Trump. The quadratic effect however varies across waves, and the interpretation here is difficult. Because the income variable is demeaned and standardized, it is instructive to think of the effect of a one-standard deviation increase in income, with racial resentment held at some fixed level. In 2016, holding racial resentment constant, a one standard deviation increase in income leads to an $e^{.08-.1+.77R_i}$ change in the odds of supporting the Republican candidate. For a voter in Montana, a one standard deviation increase in income leads to an 1.23 increase in the odds of supporting Trump ($e^{.08-.1+.77*.30} = 1.23$). For a voter in New York, a one standard deviation increase in income leads to a ($e^{.08-.1+.77*.1} = .907, \frac{1}{.907} = 1.1$) 1.1 times decrease in the odds of supporting Trump. This is consistent with our expectations. It also highlights why it is necessary to model the marginal effect of income conditional on racial resentment.

It is interesting to note that state-level racial resentment had the lowest p-value in 2012, the year in which state income had the greatest explanatory power. At the same time, the main effect of state median income was significant in this year. This suggests some influence of political competition and issue dynamics: there was a clear difference between Romney and Trump in terms of the extent to which they emphasized race as a dimension of conflict.
Chapter 4

Conclusions

4.1 Racial resentment matters

Ignoring racial resentment in a model of voting intention is a significant source of model misspecification. This is repeatedly confirmed by our plots in section 4.1. On the basis of our model fit statistics, it seems to be a larger *prima facie* mistake to ignore racial resentment when predicting vote share than it is to ignore income. It is straightforward to conclude that the model of income in Gelman et al. is biased as a result of failing to model racial resentment.

In general, racial resentment seems to be a more powerful predictor of voting behaviour than income. In the US context, this is substantively interesting. We can better predict an individual's voting intention by their level of racial resentment than by how much money they make.

4.2 The marginal income effect

The key relationship of interest in the Gelman paper – the declining marginal effect of income on propensity to vote Republican in rich states – is actually the result of a complex state-level racial resentment and state-level income interaction. Though the interaction of state racial resentment and state income is significant, the main effect of state income is not significant in two of the last three elections, even though the main effect of state racial resentment is significant in all three. That is, the fixed
(main) effect of being in a wealthy state, after controlling for individual-level income and individual- and state-level racial resentment, is not significant in 2008 and 2016. Whereas being in a state high on racial resentment had an effect on support for Republican candidates over and above the state-level interaction effect in all years, this was true for state-level income only in 2012.

Our results strongly suggest that there is a joint distribution of state-level race-and-income effects. Blue states are richer and score less highly on racial resentment. It is not simply that they are richer; it is that they are simultaneously richer and lower on racial resentment.

To think about this geometrically, the visual representation of Gelman’s findings showed that as state income increased, the slope coefficient decreased. When the coefficient on state income is not significant, we fail to reject the null hypothesis that the relevant slope coefficient is equal to zero, that is, we are failing to reject the hypothesis that our independent variable is orthogonal to our variable of interest. We have found that the slope coefficient is associated only with the joint distribution of state income and racial resentment, and is orthogonal the univariate distribution of state income, for two of our three years.

The effect of income on vote share is nonlinear in each of the three years, even controlling for the effect of state income. However, the direction of the nonlinearity changes over time: in 2008, individuals on high incomes were more likely to support McCain, ex ante; in 2012, the effect was attenuated, and in 2016, the effect of income started to decline as incomes become very large.

There is significant over-time variation in these relationships. In 2008, being very rich increased likelihood of voting Republican, but there was no state-level income effect and no interaction effect between state income and state racial resentment. The intercept does most of the work in explaining Obama’s victory. Notice however
that the sample size for this model is significantly lower than that for the other two elections. In 2016, being very rich decreased Republicanism, but high state income amplified the effect of state racial resentment on voting Republican.

4.3 The Tesler Story: From competition over class to competition over race?

There is clearly over-time change in the relationship between income, racial resentment, and voting intention. We have not sought specifically to model the dynamic aspects of this relationship. In part, that is because the dynamic effects are most likely a function of changes in political strategy: McCain and Romney did not compete explicitly on attitudes to race, whereas Trump did. A modelling strategy for this is beyond the scope of this paper.

We find some support for Tesler’s hypothesis that racial resentment has driven dynamic change in voting intention over the last three election cycles. Racial resentment has had a large absolute effect in each election, but the magnitude of that effect appears to have increased over time. It is striking that in Figure 6, income appears to have no omitted influence on our intercept or slope coefficients in the racial resentment model.

The 2016 election stands out as different both from the 2008 and 2012 elections, and from the elections considered in Gelman et al. The slope coefficient in the Gelman model was not significant: state-level income did not have an effect even in the biased model specification. There was clear evidence of a racial ‘peer effect’: the effect of racial resentment on propensity to support Trump increased as the level of racial resentment in that state increased. There was no bias at all from state-level income on the coefficient estimates from the 2016 racial resentment model. The absolute
value of the coefficient on individual-level racial resentment scores was larger in 2016 than in any other period. The racial resentment effect dominated the income effect in 2016. Racial resentment was a more important determinant of voting intention in 2016 than in 2012 or 2008. This coheres with the Tesler story, that there has been latent ‘racialization’ of public policy attitudes, and increased mobilization around racial conflict.

4.4 What's the matter with “What's the matter with Connecticut?”

The absence of a causal identification strategy, and the threat of omitted variable bias, mean that the conclusions from Gelman et al.’s paper are not robust to alternative model specifications. Coefficient estimates from their models are biased by failing to consider racial resentment. Gelman et al. draw an inaccurate inference about state-level variation in the marginal income effect. Variation in the marginal income effect is better explained by the interaction between racial resentment and state-level income, than by reference to state-level income alone. It is better, conceptually, to think of this as a joint distribution: the distinctive electoral climates of states are products of their attitudes to race and income levels considered together. Finally, these interactions change over time, and very plausibly as a function of changes in elite strategy, and choices about which issue dimensions to compete on. Unlike Romney and McCain, Trump chose explicitly to compete on race. That year, racial resentment mattered much more as a predictor of voting intention.
In each case, the factor was constructed with loadings intended to ensure that a positive score indicated a greater level of racial resentment. Desired factor loadings are in brackets after each question.

In the 2008 ANES survey, the following questions were asked, on a 5-point scale from strongly agree to strongly disagree:

‘Irish, Italians, Jewish and many other minorities overcame prejudice and worked their way up. Blacks should do the same without any special favors.’ (+)

‘Generations of slavery and discrimination have created conditions that make it difficult for blacks to work their way out of the lower class.’ (-)

‘Over the past few years, blacks have gotten less than they deserve.’ (-)

‘It’s really a matter of some people not trying hard enough; if blacks would only try harder they could be just as well off as whites.’ (+)

In the 2012 CCES survey, the following questions were asked:

‘Irish, Italians, Jewish and many other minorities overcame prejudice and worked their way up. Blacks should do the same without any special favors.’ (+)

‘Generations of slavery and discrimination have created conditions that make it difficult for blacks to work their way out of the lower class.’ (-)

In the 2016 CCES survey, the following questions were asked.
‘I am angry that racism exists.’ (-)

‘White people in the U.S. have certain advantages because of the color of their skin.’ (-)

‘I often find myself fearful of people of other races.’ (+)

‘Racial problems in the U.S. are rare, isolated situations.’ (+)

R code and replication materials for this paper are available on request.
Selected bibliography

