Georgetown University LogoGeorgetown University Library LogoDigitalGeorgetown Home
    • Login
    View Item 
    •   DigitalGeorgetown Home
    • Georgetown University Institutional Repository
    • Georgetown College
    • Department of Chemistry
    • Graduate Theses and Dissertations - Chemistry
    • View Item
    •   DigitalGeorgetown Home
    • Georgetown University Institutional Repository
    • Georgetown College
    • Department of Chemistry
    • Graduate Theses and Dissertations - Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the Mechanism of Action of Artemisinin Antimalarials and the Role of Ferriprotoporphyrin IX Heme

    Cover for Investigating the Mechanism of Action of Artemisinin Antimalarials and the Role of Ferriprotoporphyrin IX Heme
    View/Open
    View/Open: Heller_georgetown_0076D_14338.pdf (11.MB) Bookview

    Creator
    Heller, Laura
    Advisor
    Roepe, Paul D
    Abstract
    Malaria continues to be a serious threat to human health. The current first-line treatment
     
    for Plasmodium falciparum malaria is one of several available a
     
    rtemisinin (Art) combination therapies. Artemisinin, derived from the Chinese herb Artemisia annua, contains a highly reactive 1,2,4 trioxane ring. The exact mechanism for activation of this artemisinin pharmacophore and its relation to parasite death remain an active area of research. In its reduced form, free ferriprotoporphyrin heme (FPIX) is known to catalyze endoperoxide cleavage for artemisinin drugs. The activated drug likely proceeds from an oxy radical form to a carbon centered radical form that is then capable of alkylating a variety of targets within malarial parasites. It has been proposed for some time that FPIX liberated upon hemoglobin catabolism is one such target. Tragically, ACT resistance is emerging in some regions, and is typically defined clinically as a “delayed clearance phenotype” (DCP).
     
    Using optimized extraction procedures, mass spectrometry and UV-Visible spectroscopy, I have quantified the abundance of free FPIX and hemozoin at various stages of the P. falciparum life cycle for artemisinin-sensitive and delayed clearance phenotype parasites. Additionally, I have identified artemisinin drug-FPIX adducts from bolus dosed parasites for the first time. My results show that along with altered intraerythrocytic development, DCP parasites show altered levels of free FPIX relative to the isogenic control throughout the intraerythrocytic cell cycle, which can lead to fewer FPIX− DHA adducts formed within live parasite. Where non-
     
    crystalline FPIX is likely an important target of the Art drugs, I have also synthesized two simple Art probes in order to better define drug localization, drug – target binding, and influx / efflux of these drugs. I also monitored the reaction between the Art derivative artesunate (ATS) and FPIX in the presence of glutathione (GSH). The reaction is observed to slow dramatically in the presence of other relevant FPIX-binding antimalarial drugs. My results show that the rate of ATS activation is limited by the rate of reduction of the FPIX Fe(III) center by GSH and other drugs can compete with GSH for association with FPIX. These data are important for defining the molecular pharmacology of Art drugs and the mechanism of evolving Art resistance.
     
    Description
    Ph.D.
    Permanent Link
    http://hdl.handle.net/10822/1054902
    Date Published
    2019
    Subject
    Chemistry; Chemistry;
    Type
    thesis
    Publisher
    Georgetown University
    Extent
    211 leaves
    Collections
    • Graduate Theses and Dissertations - Chemistry
    Metadata
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Cover for Investigating Defects in the Sensing Mechanism of Carbon Nanotube Field-Effect Transistors

      Investigating Defects in the Sensing Mechanism of Carbon Nanotube Field-Effect Transistors 

      Hankins, Andrew (Georgetown University, 2019)
      In nanotechnology, understanding the effect of interfaces and defects becomes critically
    Related Items in Google Scholar

    Georgetown University Seal
    ©2009 - 2022 Georgetown University Library
    37th & O Streets NW
    Washington DC 20057-1174
    202.687.7385
    digitalscholarship@georgetown.edu
    Accessibility
     

     

    Browse

    All of DigitalGeorgetownCommunities & CollectionsCreatorsTitlesBy Creation DateThis CollectionCreatorsTitlesBy Creation Date

    My Account

    Login

    Statistics

    View Usage Statistics

    Georgetown University Seal
    ©2009 - 2022 Georgetown University Library
    37th & O Streets NW
    Washington DC 20057-1174
    202.687.7385
    digitalscholarship@georgetown.edu
    Accessibility