Georgetown University LogoGeorgetown University Library LogoDigitalGeorgetown Home
    • Login
    View Item 
    •   DigitalGeorgetown Home
    • Georgetown University Institutional Repository
    • Georgetown College
    • Department of Chemistry
    • Graduate Theses and Dissertations - Chemistry
    • View Item
    •   DigitalGeorgetown Home
    • Georgetown University Institutional Repository
    • Georgetown College
    • Department of Chemistry
    • Graduate Theses and Dissertations - Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metal-Oxo Containing Polymer Nanobeads As Potential Contrast Agents for Magnetic Resonance Imaging

    Cover for Metal-Oxo Containing Polymer Nanobeads As Potential Contrast Agents for Magnetic Resonance Imaging
    View/Open
    View/Open: Pablico_georgetown_0076D_11492.pdf (4.3MB) Bookview

    Creator
    Pablico, Michele Huelar
    Advisor
    Stoll, Sarah L
    Abstract
    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively.
     
    The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature.
     
    In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is also directed at developing metal-oxo containing hybrid materials using first row transition metals with potential catalytic and magnetic properties as well. We report several screened metal-oxo clusters but this study has centered on the mixed-metal oxo cluster, Mn8Fe4O12(O2CCH3)16(H2O)4 or Mn8Fe4, mainly because it is highly paramagnetic and is soluble and stable in water. The cluster was screened for potential MRI contrast and was found to be a very promising T2 contrast agent with relaxivity values of r1 = 2.3 mM-1s-1 and r2 = 29.5 mM-1s-1. Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo.
     
    One key advantage of Mn8Fe4 is its ability to undergo ligand exchange reactions, thus providing a mechanism for grafting to a variety of supports. By substituting the acetate groups on Mn8Fe4 with polymerizable ligands, we are able to form monodisperse magnetic polymer nanobeads (~70 nm diameter) via the miniemulsion polymerization technique. To render the nanobead suitable for future in vivo experiments, we coated the surface with biocompatible polysaccharide dextran (40 kDa). Interestingly, relaxivity measurements and MRI studies show that encapsulating the Mn8Fe4 core within a polymer matrix decreased T2 effects resulting in a positive T1 contrast enhancement. The resulting hybrid particles have the potential for further surface functionalization (i.e., therapeutic drugs, targeting moiety, fluorescent probe, etc.) making them a promising tool for biomedicine.
     
    Description
    Ph.D.
    Permanent Link
    http://hdl.handle.net/10822/557942
    Date Published
    2011
    Subject
    Clusters; Contrast Agents; Metal-Oxo; MRI; Nanobeads; Polymer; Chemistry; Chemistry, Inorganic; Chemistry; Inorganic chemistry;
    Type
    thesis
    Publisher
    Georgetown University
    Extent
    282 leaves
    Collections
    • Graduate Theses and Dissertations - Chemistry
    Metadata
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Cover for Metal-Oxo Polymer Nanobeads as Potential Multi-Modal Contrast Agents for Magnetic Resonance Imaging

      Metal-Oxo Polymer Nanobeads as Potential Multi-Modal Contrast Agents for Magnetic Resonance Imaging 

      Dahanayake, Vidumin (Georgetown University, 2018)
      Magnetic Resonance Imaging (MRI) has become one of the most powerful non-invasive imaging modalities in clinical diagnostics and research, being able to distinguish soft tissues at a very high spatial resolution. The use ...
    Related Items in Google Scholar

    Georgetown University Seal
    ©2009 - 2023 Georgetown University Library
    37th & O Streets NW
    Washington DC 20057-1174
    202.687.7385
    digitalscholarship@georgetown.edu
    Accessibility
     

     

    Browse

    All of DigitalGeorgetownCommunities & CollectionsCreatorsTitlesBy Creation DateThis CollectionCreatorsTitlesBy Creation Date

    My Account

    Login

    Statistics

    View Usage Statistics

    Georgetown University Seal
    ©2009 - 2023 Georgetown University Library
    37th & O Streets NW
    Washington DC 20057-1174
    202.687.7385
    digitalscholarship@georgetown.edu
    Accessibility