Georgetown University LogoGeorgetown University Library LogoDigitalGeorgetown Home
    • Login
    View Item 
    •   DigitalGeorgetown Home
    • Georgetown University Institutional Repository
    • Georgetown University Medical Center
    • Biomedical Graduate Education
    • Department of Neuroscience
    • Graduate Theses and Dissertations - Neuroscience
    • View Item
    •   DigitalGeorgetown Home
    • Georgetown University Institutional Repository
    • Georgetown University Medical Center
    • Biomedical Graduate Education
    • Department of Neuroscience
    • Graduate Theses and Dissertations - Neuroscience
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Controlling growth cone behavior through substrate patterning

    Cover for Controlling growth cone behavior through substrate patterning
    View/Open
    View/Open: Smirnov_georgetown_0076D_12820.pdf (3.4MB) Bookview

    Creator
    Smirnov, Michael Sergey
    Advisor
    Urbach, Jeffrey S
    Geller, Herbert M
    Abstract
    Throughout the process of development, billions of neuronal axons are responsible for navigating through the nervous system and synapsing onto their appropriate targets. To establish their individual paths, neurons are guided by a complex and dynamic map of biochemical, topographic, and mechanical signals. At the tip of each neurite lies the growth cone - a dynamic structure responsible for interpreting extracellular cues and steering neuronal growth in the appropriate direction. Growth cones in vivo exhibit various morphologies and behavioral changes, though the underlying mechanisms of these changes remain widely unknown. Through the use of substrate patterning techniques, we examined the relationship between growth cone morphology and behavior with the purpose of optimizing guidance in engineered regenerative systems.
     
    We investigated multiple substrate patterning techniques in order to achieve easily observable manipulations to growth cone morphology. We found that common micro-contact printing and microfluidic techniques are poor at creating isolated regions of overlapping biochemical cues. We also found that established protein patterning methods for soft substrates are ill-suited for use on surfaces with nervous system-relevant elasticity. Using laser ablation, we designed micron-scale patterns capable of confining dissociated mouse cerebellar granule neuron growth cones to channels of different widths. Growth cone dynamics in these channels were observed using time lapse microscopy. Growth cone area was decreased in channels between 1.5 and 6 µm as compared to that in 12 µm and unpatterned substrates. Growth cone aspect ratio was also affected as narrower channels forced growth cones into a narrow, elongated shape. There was no difference in the overall rate of growth cone advance in uniform channels between 1.5 and 12 µm as compared to growth on unpatterned substrates. The percentage of time growth cones advanced, paused, and retracted was also similar. However, growth cones responded to changes in confinement: growth cones in narrow lanes rapidly sped up when encountering a wide region and then slowed down as they entered another narrow region. Our results suggest that the rate of neurite extension is not affected by the degree of confinement, but does respond to changes in confinement.
     
    Description
    Ph.D.
    Permanent Link
    http://hdl.handle.net/10822/760909
    Date Published
    2015
    Subject
    CSPG; Growth cone; Neuron; Regeneration; Spinal cord injury; Neurosciences; Neurosciences;
    Type
    thesis
    Publisher
    Georgetown University
    Extent
    128 leaves
    Collections
    • Graduate Theses and Dissertations - Neuroscience
    Metadata
    Show full item record

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Controlling Behavior Through Drugs 

      Neville, Robert (1974-01)
    Related Items in Google Scholar

    Georgetown University Seal
    ©2009 - 2022 Georgetown University Library
    37th & O Streets NW
    Washington DC 20057-1174
    202.687.7385
    digitalscholarship@georgetown.edu
    Accessibility
     

     

    Browse

    All of DigitalGeorgetownCommunities & CollectionsCreatorsTitlesBy Creation DateThis CollectionCreatorsTitlesBy Creation Date

    My Account

    Login

    Statistics

    View Usage Statistics

    Georgetown University Seal
    ©2009 - 2022 Georgetown University Library
    37th & O Streets NW
    Washington DC 20057-1174
    202.687.7385
    digitalscholarship@georgetown.edu
    Accessibility